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SUMMARY 

Moments analysis was used to characterize the elution chromatographic 
peak from a column, in which the longitudinal dispersion in the mobile phase, the 
radial dispersion inside the porous spherical bed packing and the sorption on the 
internal surface of the spherical bed packing are simultaneously taking place. A 
sample feed and an elution step are fed into the column as a consecutive pulse alter- 
nately, so that a continuous operation of chromatography can be performed. 

INTRODUCTION 

The present paper describes a theory of consecutive pulse sample feed elution 
chromatography which simultaneously takes into account the longitudinal dispersion 
in the mobile phase, the radial dispersion inside the porous spherical bed packing. 
and the sorption on the internal surfxe of the spherical bed packing. The theory is a 
modification of KuCera’s’ linear non-equilibrium elution chromatography by changing 
a customarily used injection feed represented by a d-function to a square pulse train 
sequence, so that a sample feed and an elution step can be alternated consecutively 
for an automated continuous operation of chromatography. 

FORMULATION OF PROBLEMS . . 

We consider an infinitely long column with a section uniformly filled with the 
porous spherical bed packing material. The void volume fraction in the column is 
designated as E,,, and the porosity of spherical radius R packing material is E,. The 
velocity profile of the mobile phase was assumed to be a plug flow with the average 
carrier velocity U. The dispersion in the mobile phase was assumed to be in a longi- 
tudinal direction only and its dispersion coefficient, I),,,, was also assumed to be a 
constant. Then the solute transfer into the stationary phase through the interphase 
layer by a mass transfer process with a constant mass transfer coefficient /cnr. The 
solute dispersed further in the stationary phase into the interior of each spherical 
packing with a constant dispersion coefficient D,. Finally, on those porous spherical 
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packings adsorption and desorption were taking place for the solute component. 
Then the elution will proceed. The equations describing the above chromatographic 
process are characterized by the following mass balance equations 

act,, act,, azc,,, -- 
at + u at *W az2 - -I- k&x,,, - c, 1 r=n) = 0 

for the mobile phase, and 

ac, 2 ac -- 
at 

D, (i?;$ -1s. ~ -$) = _ _$_ 

(1) 

(2) 

for the stationary phase. Assuming a finite rate of adsorption on the internal porous 
surface of spherical bed packing with a linear isotherm. one has 

*=tcc-kll a, As D 

for adsorption kinetics. C denotes the solute concentration, and subscripts 111 and s 
denote mobile and stationary phases, respectively. II is the solute concentration ad- 
sorbed on the porous surface. K is the partition coefficient of the solute, and kn and 
k,, are the rate constants for adsorption and desorption, respectively. 

The initial and boundary conditions for the pulse sample feed train are 

C,,,(Z.f) = 0 

C,(r,z,r) = 0 

C,,,(a) = 0 

&,,I/< M ( KC,,, - c, 1 r= ,<I = 

ac, 
ar = 0 

r-0 

for I 0 (4) 

I = (5) 

for 

THE LAPLACE TRANSFORMS AND MOMENTS ANALYSIS 

Ideally, one would like to obtain an exact solution of C,,,(:,t). The set of dif- 
ferential equations subjecting to those initial and boundary conditions is difficult to 
solve analytically. However. the chromatographic peak can be completely charac- 
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terized by the statistical moments - z ‘. The moments of C,,,(Z.~) can be found by using 
either the Laplace or the Fourier transformation. In the Laplace domain the equations 
describing the system presented above are given as 

dC d’c,,, 
SC,,, + u + - D ,,I d-2 -I- k,,(KC,,, - C* I r=R) = 0 (11) 

(12) 

The initial conditions, eqns. 4-6. were used in obtaining those transformations. The 
boundary conditions in the Laplace domain are 

c,,, (0,s) = co ($ - $-‘O”) (14) 

c,,, (-9s) = 0 (15) 

E&n, (KC,,, - c3.5 1 r=,o = - 
3(1 - E &.V 

R 
.D de, 

’ dr ,= 18 
(16) 

de, 
dr = I 

0 (17) 
r=O 

Elimination of A from eqns. I2 and 13 gives 

d2Cs , 2 dC, -- -_- - 
dr-2 )’ dr 

UC, = 0 (18) 

in which 

1 
[. 

s” -I- (I<, -I- Is,& 
a=D, - s -I- Ic,, 1 (19) 

The solution of eqn. 18 together with the boundary conditions eqns. 16 and I7 is 
obtained as 

C,, = A, ’ c,,, [&]-+ - I, (aft+) (20) 

where 

Al = 3(1 - 
/c,+,KR,,,R~[~~-~R].~ 

.z,,,)~sD,a~‘R~3~2 (d R) + /c~~E,,,R~~+.(u.~.R) 

Substituting eqn. 20 into eqn. Il. one obtains 

(21) 

d2 C,,, u de,,, ----- 
dz2 D ,,, dz 

+ c,,, = 0 
,,I 

(22) 
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in which 

A2=s-+ 
3kMK(1 - .s,,,)a,D,a~ R Js12 (a3 RI 

3(1 - E,,,)E, a+ R/&af R) -t- kM~,,,R21~.(a~~ 

The solution for C,,, with the boundary conditions, eqns. 14 and 15, is 

C&J) = co 1 -,‘- 
f0.S 

C u 
exp 20,, - I: _-..K-_ + -g-L]“3 - = 

2D,,, VI 

(23) 

(24) 

Since we are interested in C,,,(z,s) at a particular point L (at the exit of the column) 
we can replace z in eqn. 24 by L. It is difficult, if at all possible, to invert the equation 
back to the time domain. However, the expression similar to Kueera’s’ expansion 

C,,,(f) = C,,,W) I :=I. = 2 n,,N,, (S$- 
) [ 

exp - (t - FJ2 

,1 = 0 2Pz I 

can be found by using Hermite polynomials’ 

H,,(s) = i 
( - I )‘n ! 

-- * (,2x)“_ZJ 
,=. .j!()?-2j)! (26) 

where N = n/2 for even 11; N = (IZ- 1)/2 for odd U. The expansion coeflicients a,, 
are given by the equation 

based on the orthogonality of Hermite polynomials. In eqns. 25 
are the Kth moment of function C,,,(f) defined by the equation 

where 

(27) 

and 27. t&K and pk’ 

(28) 

(2% 

For convenience, all moments higher than the first around the center of gravity of 
C,(t) are generally used. The Kth central moment is defined by 

- p,)” C,,,(!)df = ,$ (:‘) (-,&)” -’ - fi,; K> 1. (30) 

By use of the property of the Laplace transform 

s cm ak’C,,(s) 
0 

tK C,,(t)dr = (- 1Y lim T- 
s-0 

(31) 



CONSECUTIVE PULSE SAMPLE FEED ELUTION CHROMATOGRAPHY 5 

.’ 

the moments of C,,(t) are obtained. The expansion coefficients a, expressed in terms 
of central moments /AK are 

The resulting moments up to the third central moments are presented by 

#U() = po = 1 

#U, = 0: /?, = -+ -b -$- (1 -I- rp/:) 

where 

CC2 = -$- + ., 13 R2s ~79 
160K~,$D., ( 1 --es + 

2/C& 
k,,(k,$ -I- A-0) 1 

(32). 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

1 ~E,,,R~+ ----- _ _ 
lGOK.s,(l-~,,,)D,V ’ 

16S:,, R%p” 
3 1 SE;( 1 - E,,,)~K~D~~ 

2k,,vj 
k,(k, -I-/CD) 

_t- _ 4_R2~,,,r$ __-- -- 
5k;K2e,D, (1 SE,,,) ’ 

39 Rryk,, 
-‘- ToD,k,: -‘- 

1 Glcnq-. 

UC,, -t- k,,) 1 (3% 
DISCUSSION 

The first moment as indicated by Grushka et al.B is the retention time t,( of 
the solute, i.e., the time when the maximum concentration is registered at the point 
of detection. In this case, the retention time is given by 

tR = PI = -$_ .+ -$ (I -1-V’) (40) 

It is interesting to note that I,~ is unaffected by the dispersions in the longitudinal 
direction and in the porous spherical bed packing and that the parameter F in eqn. 

. 
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37 is a modification of KuEera’s parameter’ K( 1 - E,,,)/E,,, by multiplying with a 
factor of e,(/i” -I- k,J//;,,. The peak does depend on the bed structure and adsorption 
and desorption coef%ients. Probably. the sequence of pulse sample feed and elution 
trains eliminates the effect of dispersions, and the kinetic coefficients and the bed 
structure are becoming more important factors in the process. The result is similar 
to the one obtained by Crushka”. but wifhout assuming the term 2D,,,/Uz being neg- 
ligiblc. The second moment is the peak variance which leads to a direct derivation 
of the plate height. l-f. 

In obtaining eqn. 41. the loading time f 0 was assumed to be very small compared 
with the other terms of eqns. 36 and 38. The theoretical plate height depends on all 
factors characterizing the column. its filling and transport of the given compound 
through the column. It increases with the increasing coefficient of the longitudinal 
dispersion, the partition coefficient. and the size of bed packing particles R. It de- 
creases with the increasing of the dispersion coefficient in the porous bed packing. 
the mass transfer coeil%ient from the mobile phase to the stationary phase and the 
porosity of the bed packing. 

With the information of lo and 1,(, one should be able to program the sequence 
for sample feed-elution schedule for automated continuous operation of the chro- 
matography. 
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